
Research Submitted
 To achieve a professional master's degree in

software engineering

Submitted by

Name: Asmaa Salama Taha

Supervision:
D. Atef Tayeh Noureddine Raslan

2024

In partial fulfillment of degree requirements

Professional Master

in

Software Engineering

Approved by the Screening Committee
name signature

Professor Mervat Ghaith
………………….

Doctor Tariq Abdul hafiz Abdul latif Ali
………………….

Doctor Atef Tayeh Noureddine Raslan
………………….

Consent Sheet

Abstract

The rapid evolution of software development practices has led to the widespread adoption of DevOps,

a methodology that integrates development and process teams to improve collaboration, accelerate

release cycles, and improve software quality. Fundamental to DevOps is the transformation of

software testing, which goes from a silo activity at a late stage to a continuous and integrated process

throughout the entire development lifecycle. This paper explores the role of testing practices within

DevOps environments, focusing on how continuous testing, automation, and CI/CD pipelines affect

traditional testing methodologies.

By leveraging automated tools and integrating testing at every stage of development, DevOps allows

for faster defect identification, more frequent deployments, and reduced manual testing efforts. By

reviewing existing literature, case studies, and empirical data from organizations practicing DevOps,

this research assesses the impact of these practices on software quality, performance, and frequency of

deployment. Furthermore, it highlights the challenges organizations face when implementing DevOps

testing practices, such as the complexity of tool integration and the need for skilled resources.

The results show that DevOps testing practices contribute to a more efficient workflow, reduced time-

to-market, and enhanced software reliability. However, these benefits come with challenges, including

the maintenance of automated tests and the constant need to improve infrastructure. The paper

concludes by discussing future trends, such as the possibility of AI-based testing, and identifies

strategies to overcome current barriers in DevOps testing applications. This research provides insight

into the future direction of testing in software development, focusing on the importance of continuous

adaptation to emerging technologies and methodologies.

Contents
Chapter One: Introduction... 2

Introduction..2

The first topic: the background of the research (Background)..3

The second topic: the research problem (Research Problem)...8

Third Theme: Research Objectives...13

Chapter Two: Literature Review...18

The first topic: DevOps and Development Methodologies..18

The second topic: DevOps tools and software testing (DevOps Tools and Software Testing). . .25

Third Theme: Challenges in Implementing DevOps...31

Chapter Three: Methodology...34

The first topic: the work environment (Environment Setup)..34

The second topic: DevOps Application (DevOps Implementation)..42

Chapter Four: End of research...44

Conclusion...44

Results... 44

Recommendations...45

references...45

2

Chapter One: Introduction

Introduction

In recent years, the software industry has witnessed tremendous developments as a result of

rapid technological progress and increasing market demands. Companies are striving to deliver

high-quality software at breakneck speed to meet the growing needs of customers. Hence, great

challenges have emerged for teams working in software development, especially in light of

traditional methods that rely on a clear separation between the stages of development, testing

and operation. This separation led to gaps between development and operations teams, resulting

in delays in product launches and an increase in the number of Bugs and software problems that

are detected in late stages.

In light of these challenges, DevOps has emerged as an innovative solution that aims to integrate

development and operations into the software lifecycle. DevOps is not just a set of tools, but a

collaboration culture that seeks to improve the relationship between development and operations

teams, enhance automation, and accelerate deployment and continuous delivery. Through this

methodology, the focus is on continuous integration (CI) and continuous deployment (CD),

allowing problems to be identified early and quickly addressed before they escalate.

One of the most important factors that contributed to the success of DevOps is the integration of

software tests at all stages of software development. In traditional methods, tests would come

after development was completed, delaying error detection. In DevOps, tests are ongoing,

meaning that every piece of code is tested immediately after it is written. This not only helps

detect errors early, but also reduces the burden of repeated manual tests, thanks to the

automation in which it is used. Advanced testing tools such as Selenium, JUnit, and others.

Modern tools that support DevOps help teams build and deploy software at breakneck speed,

while maintaining high quality. This is achieved through the use of version management systems

such as Git and GitLab, and continuous integration tools such as Jenkins that allow developers to

3

continuously and automatically test code. In addition, monitoring and analysis tools such as

Prometheus and Grafana help monitor performance and detect issues related to infrastructure or

applications.

This research aims to study the impact of DevOps methodology on the software development

process, especially with regard to software quality and speed of deployment. Emphasis will be

placed on how to integrate continuous testing into the development lifecycle, and the role of

automation in improving performance and reducing errors. By studying the application of

DevOps in a range of companies and analyzing the data extracted from these experiences, the

benefits and challenges associated with adopting this methodology will be evaluated. The tools

used in DevOps will also be reviewed. And how to integrate them with each other to provide an

integrated and effective development environment.

The first topic: the background of the research (Background)

The importance of accelerating software development.

Accelerating software development has become a major goal for many companies and

organizations in the rapid digital era, where the modern market requires the frequent and rapid

launch of software to meet the ever-changing needs of customers. With the increase in

competition in different sectors, speed is no longer just an additional advantage, but a necessity

for survival in the market and the ability to keep pace with developments. Accelerating the

software development process is linked to several fundamental factors that directly affect the

overall performance of companies, including the ability to innovate, improve the experience

user, increasing flexibility in adapting to business requirements.

One of the most important reasons why software development should be accelerated is to reduce

the time required to launch new products or updates to market. In traditional environments, the

software development cycle would take long periods of several months or even years, resulting

in products being introduced after market needs had changed or evolved. Companies lose their

4

competitiveness, as competitors deliver updated services or products faster. By reducing the

time it takes between a product idea and its launch on the market, Companies can take advantage

of new opportunities more quickly, and respond to changes in the market or technology

improvements in real time.

Moreover, accelerating the development process allows companies to test new ideas faster and

try new products with users before fully committing to them. The ability to quickly build a

prototype or prototype of the product, then receive feedback from users and modify the product

based on these feedback, allows companies to offer products that are more aligned with the

needs of users, enhancing the chances of success. This process, known as "fast iteration,"

improves the final quality of the software, as errors are detected and corrected at early stages of

development.

Accelerating software development also contributes to improving the internal productivity of

companies. When development time is reduced, tech teams can focus on more strategic and

innovative tasks, rather than being preoccupied with routine details that can take a long time. For

example, automation plays a big role in this context, reducing the time spent on processes such

as manual testing or traditional application deployment. Tools such as continuous integration

and continuous deployment (CI/CD) Teams can automate multiple stages, allowing them to

devote more time to creativity and innovation.

In addition, companies that accelerate software development have the added advantage of

reducing costs. Delays in software development not only cost in terms of missed opportunities,

but also lead to higher operational costs over time. The longer the development time, the more

likely new bugs are to appear that need to be fixed, which increases costs. Conversely, when

software is developed quickly and efficiently, the chances of these big bugs appearing are

reduced, and the correction process is easier and less expensive.

Also, by accelerating development processes, companies have the ability to respond faster to

software bugs that may appear after a product launches on the market. In the past, error handling

5

was time-consuming due to the multiple stages of modifications. Now, with continuous

automation and integration, errors can be corrected in a short time and instant software updates

released to users, greatly improving the user experience and boosting product confidence.

Accelerating software development also enhances the ability to adapt to modern technologies

and changes in the technical environment. As new technologies emerge at a rapid pace,

companies that rely on long development cycles find it difficult to keep up with these changes. In

contrast, companies that rely on accelerating the development process are more flexible in

adopting modern technologies such as artificial intelligence, cloud computing, or the Internet of

Things, giving them a strong competitive advantage in the market.

Finally, accelerating the software development process fosters a culture of collaboration

between teams within companies. When agile methodologies such as DevOps and Agile are

applied, the roles overlap between the development, testing, and operations teams, enhancing

collaboration and transparency among all. This shared culture creates an integrated and efficient

work environment focused on common goals, such as improving product quality and

accelerating time-to-market.

In the end, it can be said that accelerating software development is not only necessary to keep

pace with rapid technological developments, but also a key factor in enhancing the

competitiveness of companies. This process ensures that higher quality products are delivered

quickly, customer satisfaction is improved, and team efficiency is enhanced, which reflects

positively on the success of organizations in achieving their goals.

Development methodologies evolve from Waterfall to Agile and then DevOps.

The evolution of software development methodologies has been the result of rapid changes in

market needs and the advancement of technology. Initially, the Waterfall methodology was the

most widely used. This methodology is based on a linear model, as it includes a series of stages

that must be completed sequentially, starting with the collection of requirements, then design,

6

then implementation, and finally testing and delivery. This method used to give the impression

of security and organization, but it has significant drawbacks. One of the most prominent of

these disadvantages is that it lacks flexibility. If customer requirements change or problems arise

New in an advanced stage, the process was time-consuming and expensive to correct course. As

a result, there was a sense of frustration among many developers and customers alike, as many

errors were discovered at the end of the project, which negatively affected the quality of the final

product.

As time progressed and software became more sophisticated, developers began looking for more

flexible and efficient ways. This is where the Agile methodology emerged. Agile adopts a

philosophy that focuses on collaboration and interaction between teams, and allows for constant

changes in requirements even in the advanced stages of software development. By breaking

down work into small cycles called "Sprints," teams can introduce new features faster and get

instant feedback from users. This helps improve product quality, as each feature is frequently

tested, enabling errors to be detected early and addressed. But despite the benefits of Agile, it

requires significant cultural change in organizations. Many teams have faced challenges in

transitioning from traditional patterns to a more interactive and collaborative culture.

Over time, Agile is not enough on its own to address the ongoing challenges facing development

teams. Hence the DevOps methodology, which combines aspects of Agile and operations.

DevOps is not just a set of tools or technologies, but a comprehensive culture that aims to unite

different teams such as development and operations. Through continuous integration and

deployment, effective collaboration between teams is achieved, allowing for accelerated

deployments and continuous software improvement. Automation plays a big role here, as it is

used to automate software tests and deployments, which increases productivity speed and

reduces human errors.

In short, the evolution of software development methodologies from Waterfall to Agile and then

DevOps reflects the constant need to improve the process and meet changing market demands.

7

Through these developments, teams are able to work more flexibly, achieving better results in a

shorter time, enhancing the success of organizations in delivering high-quality software. This

journey from tradition to innovation reflects significant changes in how teams deal with new

challenges in the world of technology.

The impact of DevOps on the software development lifecycle (SDLC).

The impact of DevOps on the software development lifecycle (SDLC) is significant and direct,

as it has changed not only how operations are executed, but also how teams collaborate and

achieve goals. To begin with, let's consider the difference between DevOps and traditional

models. In traditional methods, there were clear barriers between development teams and

operations teams, leading to rampant communication issues. Often, development teams were

focused on writing code and developing features, while operations teams were dealing with

operational issues. After launch. This separation meant that problems were only discovered in

the late stages, leading to additional costs and delays in launch. With DevOps, these barriers

were torn apart, and everyone was working toward a common goal, which helped improve

overall effectiveness.

Since DevOps focuses on continuous integration (CI) and continuous deployment (CD), this

idea allowed the code to be checked on a regular basis. This means that instead of waiting for the

development phase to finish to detect bugs, the code is continuously tested during the

development process itself. This reduces the likelihood of significant errors at launch. Detecting

errors in advanced stages is known to cost a lot, but when they are addressed in a timely manner,

it becomes less expensive and easier.

When we talk about optimization, using automation in DevOps makes the process smoother.

Automation tools are used to perform multiple tests automatically, meaning developers can

focus on creativity and innovation rather than being preoccupied with time-consuming manual

8

processes. This automation also ensures that teams operate on uniform standards, making it

easier to identify and resolve issues faster.

Also, we should consider how DevOps helps improve customer satisfaction. By getting quick

feedback from users, teams can continuously modify software to meet their needs. Instead of

launching a product that may not meet market expectations, teams can use the data they collect

from user experiences to develop new features or improve existing ones. This enhances the user

experience and increases the chances of success in the market.

But not all things are perfect. DevOps needs a cultural change within an organization. Not only

an investment in tools and technologies, it needs a change in the way we think and collaborate.

Teams must be open to collaboration and knowledge sharing, and this is not always easy. In

addition, there are challenges related to training and skills development, as teams need to learn

and use new tools.

The second topic: the research problem (Research Problem)

Challenges in software testing in traditional methodologies.

When we talk about software testing in traditional methodologies, there are a lot of challenges

that teams face. One of the biggest problems is the nature of these methodologies, such as

Waterfall, which relies on a strict sequence of steps. This means that most of the time, software

testing is performed in the final stages of the development process. After the code is written, the

time comes for testing, and this is a big problem. A lot of errors may remain hidden for a long

time, and this leads to their late detection, which increases of the cost and time required for

repair. If there are changes in requirements during the development stages, it becomes more

complicated, because re-modifying the code and testing it again means going back to earlier

stages.

Many teams find themselves in a difficult situation, having to deal with time pressure.

Customers are often waiting for a new product, so teams are under great pressure to deliver the

9

product on time. This pressure often leads to shortening important steps in the testing process,

which means that software quality may be affected. Sometimes, teams prefer to release an

incomplete product rather than delay, and this negatively affects customer satisfaction and trust

in the company.

There are also challenges related to communication and collaboration between teams. In

traditional methodologies, development teams and testing teams usually work in relative

isolation. This can lead to misunderstandings between teams, as developers may think the

product is ready, while testers discover a lot of errors when conducting tests. This makes

communication between teams vital but also challenging. Sometimes, developers may not

receive the necessary feedback in a timely manner, exacerbating issues in later stages.

One of the problems also relates to the tools used in the test. In traditional methodologies, teams

may lack the right tools to automate tests, making manual tests the dominant choice. This type of

test can be tedious and time-consuming, increasing the likelihood of human errors. When teams

have to run frequent manual tests, this can lead to burnout and a loss of accuracy. Mistakes that

may occur due to fatigue or concentration can be costly.

It's also difficult to keep testing all aspects of software, especially with large and complex

systems. There are many possible scenarios to test, and it can be impossible to cover every

corner. This means that some issues may remain undetected even after the product launch,

increasing subsequent costs and affecting the company's reputation.

Finally, when it comes to documenting bugs and tests, this is often overlooked in traditional

methodologies. Lack of accurate records can cause confusion. If teams don't document what has

been tested and what has been fixed, it becomes difficult to know which parts of the software

need to be improved or revisited. This also affects the ability to learn lessons from past

experiences, where teams are less able to continuously improve.

All these challenges highlight the difficulties faced in software testing in traditional

10

methodologies, leading to the urgent need to adopt new, more flexible and efficient methods,

such as Agile and DevOps, aimed at effectively addressing these problems and improving

software quality in general.

The need for continuous integration between teams.

The need for continuous integration between teams is becoming more evident in the

contemporary software development world. The first reason is that systems are becoming

increasingly complex, and each team is working on a different part of the system. When

developers, testers, and operations teams work in isolation, they put the entire project at risk.

Changes made by developers to one part of the code may unexpectedly affect other parts, and

when there is no good formatting, it can appear late, resulting in to big problems. Therefore, it is

essential to have continuous integration to reduce these gaps.

When we talk about continuous integration, the idea is that all teams must work in synchrony. In

other words, development, testing, and operations teams should be in constant contact. This

helps ensure that everyone has a clear understanding of what's going on in the project, and any

changes that occur in the code or requirements. Most importantly, tests can occur periodically,

allowing errors to be detected early before they become major issues. The earlier an error is

detected, the sooner The easiest and least expensive to repair.

Then there's the question of flexibility. In a rapidly changing world, developers need the ability

to adapt to requirements changes. When each team works in a silo, they have a hard time

adapting to these changes. But if there is ongoing integration, teams can react to changes more

quickly. If there is an update to user requirements, for example, the development team can

quickly accommodate this, making the project more responsive to market needs.

Then comes the question of improving productivity. When there is constant coordination, there

is less pressure on teams, as they can work more efficiently. If teams work in isolation, there will

be a lot of wasted time due to the need to communicate and coordinate later. But when processes

11

are well integrated, each team can be more productive, avoiding redundancy and confusion.

Also, continuous integration encourages innovation. When developers can get instant feedback

from test teams or processes, it allows them to refine their ideas faster. This fosters a spirit of

collaboration and creativity, as everyone feels part of a larger process. This type of environment

can lead to significant improvements in the quality of the final product.

Team integration can also significantly improve software quality. By sharing knowledge and

experience, developers can learn from mistakes made by others, and this creates an environment

rich in learning and development. When everyone works together, it becomes easier to identify

barriers and improve processes.

However, it must be recognized that continuous integration is not easy. It takes cultural change

within organizations, and this is not easy. Everyone needs to embrace a spirit of collaboration

and communication. Individuals must abandon the mindset of working in isolation and be

willing to share ideas and information. Organizations also need to invest time and resources in

developing tools and processes that support this integration.

Deficiencies in software quality in environments without DevOps.

When we talk about deficiencies in software quality in environments without DevOps, there are

many challenges that negatively affect the bottom line. First, let's think about how teams work in

these environments. There are often barriers between development teams, testing teams, and

operations teams, creating isolation. Teams work separately, each one focusing on their own

12

tasks, and this leads to a loss of communication and coordination, which affects the quality of the

software. For example, If developers are working on writing code without consulting test teams,

they may not realize the potential problems or consequences of the code they are writing.

Then comes the great pressure to deliver products on schedule. Teams are usually under constant

pressure to achieve short-term goals, speeding up processes at the expense of quality.

Developers may feel compelled to skip certain tests or reduce the time allotted to ensure the

quality of the software, and this leads to the release of a product that may contain bugs and

defects. Thus, the focus shifts from delivering a quality product to simply meeting deadlines,

which has a negative impact on the satisfaction of customers.

When we talk about testing, the testing process in traditional environments is often limited to the

final stages of the software development lifecycle. This means that problems that may arise

during tests are discovered too late, requiring significant additional effort to fix bugs.

Sometimes, teams may have to rewrite large pieces of code, which increases costs and delays

launch.

Also, there is an issue related to human resources. In environments without DevOps, teams may

lack the skills required to handle modern automation tools or advanced testing techniques. This

makes it difficult for teams to adopt best practices in testing. When teams have to rely on manual

processes, they become more vulnerable to human errors, which can be costly.

These issues are exacerbated when we talk about complex and multi-system environments. The

more complex the systems, the more difficult it is to keep track of the quality of the software.

Teams may find themselves dealing with a large number of dependencies that need to be tested,

making it more complicated. Without a unified approach, there may be parts of the system that

are not sufficiently tested, leading to unexpected problems after launch.

Also, the absence of DevOps means a lack of quick feedback. In non-integrated environments, it

takes a long time for developers to receive feedback from testers or operations teams. If

13

feedback comes after long periods, it means that errors that may be easy to correct early can turn

into much bigger problems afterwards. Hence, defects can accumulate and become difficult to

undo.

Finally, we must talk about the work culture in these environments. Isolation between teams

often leads to a lack of a spirit of cooperation and sharing. This culture leads to repeated

mistakes and not learning from past experiences. If mistakes or lessons learned are not

documented, teams will continue to make the same mistakes without knowing how to avoid

them in the future.

Overall, deficiencies in software quality in non-DevOps environments are evident through lack

of collaboration and communication, pressure to deliver products quickly, lack of effective

automation, and delayed feedback. Therefore, it becomes clear that moving to environments that

adopt DevOps is not just an option, but a necessity to ensure high quality software.

Third Theme: Research Objectives

Explore the impact of DevOps on software quality.

The impact of DevOps on software quality can be described as a radical shift in how software is

developed, tested, and launched. First of all, when we talk about DevOps, we must understand

that it brings development and operations teams together in a way that allows them to work

together in a more coordinated way. This philosophy is not just a set of tools, but a culture that

seeks to promote collaboration and transparency. This collaboration allows developers, testers,

and operations teams to interact on an ongoing basis, leading to the detection of errors and issues

at an early stage. of the software development life cycle.

When DevOps principles are applied, testing processes are continuously integrated within the

workflow, which means that every change made to the code is tested in real time. This positively

affects the quality of the software, as errors are detected before they accumulate. When errors are

detected early, the costs of fixing them are lower, saving time and resources. In other words,

14

instead of waiting until the final stages of software testing, tests are performed continuously,

which It allows developers to tackle issues before they become complex.

Certainly, automation plays a pivotal role in this context. By automating processes, teams can

reduce reliance on manual tests. Manual tests, while important, are often prone to human errors.

But with automation tools, tests can be performed more quickly and accurately. This means that

teams can look to run multiple tests throughout the day, increasing test coverage and ensuring

that a quality product is offered.

The impact of DevOps also extends to how teams receive feedback. In traditional environments,

getting feedback from other teams can take a long time. But in a DevOps system, information is

exchanged instantaneously, allowing errors to be corrected and quality improvement more

quickly. When developers can see the impact of their changes on the system in real time, they

have the opportunity to continuously adjust their strategies and develop their skills. This quick

feedback encourages continuous learning, enhancing software quality dramatically.

What makes DevOps even more powerful is the focus on organizational culture. Instead of

working in silos, everyone becomes part of one process. This creates an environment where

teams can collaborate freely, sharing ideas and experiences. Cooperation is not just sharing

information, but also includes the ability to learn from mistakes and develop innovative

solutions together. Which leads to improved overall software quality.

Another thing that cannot be ignored is the ability to adapt to rapid changes in requirements.

When a team adopts DevOps principles, it becomes easier to adapt to changing market needs.

Instead of sticking to an old, rigorous plan, teams can adjust their strategies based on new

feedback. This rapid adaptation contributes to improving the quality of software, as the team can

quickly introduce new features in response to customer needs.

But not everything is pink. There are challenges related to the implementation of DevOps that

may affect the quality of the software. Companies that may not be prepared for cultural change

15

may face difficulties. In addition, the need to invest in training and skills development to provide

teams with the right tools is essential. So, even with the benefits of DevOps, it takes effort and

time to adapt.

But overall, the positive impact of DevOps on software quality seems undeniable. By enhancing

collaboration, accelerating the testing process, improving process automation, and providing

continuous feedback, teams can produce high-quality software more efficiently. In doing so,

DevOps is the catalyst for development teams to push boundaries and achieve results that exceed

expectations.

Analyze automated tests and their role in improving deployment speed.

Analysis of automated tests and their role in improving deployment speed is a very important

topic in the world of software development. When we talk about automated tests, we mean using

tools and techniques to perform tests automatically, reducing reliance on manual processes that

can take time and effort. The idea here is to improve the speed and quality of deployment at the

same time, and this is the challenge that many teams face.

When tests are automated, teams are able to execute them repeatedly and at high speed. Instead

of spending hours running manual tests, developers can now run a set of tests within minutes.

This helps detect bugs and issues faster, which means teams can address these issues before they

cause significant delays in deployments. Thus, when the team detects a problem early, it reduces

the need for rework and means they can continue to improve. The product faster.

Also, automating tests helps increase coverage. When you have automated tests, you can test a

larger part of the app faster. I mean, instead of just running manual tests for some key functions,

you can include tests for all functions and features. This ensures that whatever changes are made

to the code, you will still make sure that everything is working well.

What sets automation apart is its ability to provide quick feedback. It means once the developer

finishes writing the code, they can run automated tests and get results in record time. This quick

16

interaction enables the team to modify the code based on test feedback, helping to significantly

improve quality. This dynamic enhances the ability of teams to respond quickly to changes and

updates in business requirements, thereby speeding up the deployment process.

When analyzing automated test data, teams can detect patterns and recurring issues. For

example, if they notice that a certain bug occurs frequently in a particular area of the app, they

can focus on improving that area. These analytics provide valuable insights that help teams

make informed decisions about how to improve the product. This data can also be used to

identify areas that need further testing or improvements.

Test automation also has a big role in reducing test costs. Although implementing automated

testing may require an initial investment in tools and technologies, the returns that come from

reducing time spent on manual testing and increasing the efficiency of processes make this

investment feasible in the long run. Teams that invest in automation find that they can save time

and effort, allowing them to focus on other, more important tasks.

But certainly, there are challenges in implementing automated tests. For example, teams need to

develop strategies to choose the right tools and ensure that automated tests are up to date with

any code changes. If automated tests are inaccurate or obsolete, they may lead to false results,

and this can negatively affect product quality. So, a balance between automation and manual

testing is essential.

17

Identify the obstacles that organizations face when implementing DevOps.

Identifying the obstacles that organizations face when implementing DevOps is a complex but

very important topic. When we talk about DevOps, we find that it is a new methodology that

requires a radical change in the way we work, and this is not easy. Many organizations face great

difficulties in moving from traditional methods to DevOps, and the reason for this can be related

to organizational culture, technologies, and human resources.

The first need is related to culture. That is, if an organization relies on a routine system and

separate teams, switching to DevOps requires a change in mindset. In development teams and

operations teams, each team often worked in isolation, and changing to an integrated

environment requires time and effort. Individuals may feel uncomfortable or afraid of losing

control, and therefore may avoid change. This is where leadership comes into play, because

having the support of senior management can help foster a culture of collaboration. It

encourages teams to work together.

Then, we meet technology-related challenges. Some organizations may have legacy systems or

tools that are not compatible with the DevOps philosophy . Using outdated tools can lead to

problems with integration and communication between teams. Companies need to invest in new

tools that allow them to automate and collaborate better. This requires a budget and the ability to

adopt new technologies, and here another challenge arises. Not all organizations have sufficient

resources to make this transition, leading to delays in the implementation process.

Also, the skills challenge comes to the fore. That is, not all individuals have the knowledge or

skills to work in a DevOps environment. Training in new tools and techniques requires effort

and time, and some employees may not have the motivation to learn or adapt to new methods.

The unavailability of experts in DevOps within the organization may lead to implementation

problems and make teams face difficulties in relying on automation and continuous integration.

In addition, there are also measurement challenges. In DevOps environments, it's important to

18

measure performance periodically. But if there is no clear framework for defining performance

indicators, teams may have difficulty evaluating success. Organizations need to define clear

metrics that help them measure the impact of DevOps on performance and software quality. But

the lack of these metrics at the beginning can lead to frustrating teams and declining enthusiasm.

In terms of security, it is an important challenge. In DevOps environments, security is integrated

into every stage of software development, but some organizations don't have clear practices on

how to achieve this. Balancing speed and security can be difficult. Therefore, organizations need

clear strategies to secure applications and data during deployments, and this requires more effort

and resources.

19

Chapter Two: Literature Review

The first topic: DevOps and Development Methodologies

DevOps in the search window

Introduction: DevOps represents a philosophy and practice that aims to improve

collaboration between software development teams and IT operations. It focuses on

improving efficiency and productivity by automating processes, increasing delivery speed,

and providing more flexibility.

 DevOps Steps

1. Planning:

 At this stage, project objectives and requirements are defined, and a detailed plan

is developed that includes all aspects of the project. This includes discussing

required features and analyzing requirements by development teams and IT

operations.

2. Development:

 Here, software is developed by writing code. Developers use version control

systems such as Git to track changes and ensure seamless interaction between

teams. Software development is based on principles such as good code writing and

constant collaboration.

3. Testing:

 After the code is written, tests are performed to ensure the quality of the software.

These tests include automated and manual tests to detect errors and ensure that

functions work as expected. Automation at this stage is key to increasing

efficiency.

20

4. Deployment:

 At this stage, the software is deployed in the production environment. The process

can include periodically deploying updates, which helps quickly introduce new

features and improvements to users.

5. Monitoring:

 After deployment, software and application performance is monitored. Monitoring

tools are used to detect any issues or malfunctions, allowing teams to react quickly

and resolve issues before they affect users.

6. Continuous Improvement:

 This phase is based on monitoring results and feedback from teams and users.

Continuous improvements are made to processes and software, ensuring

adaptation to changes in the market and technology.

Illustration

A graph can be used to show these stages sequentially or pieally, reflecting how each stage

overlaps the other.

Benefits:

1. Improve efficiency: Integrating different processes helps speed up the software

development lifecycle.

2. Increase the quality of products: by focusing on continuous testing and

improvement.

3. Enhance collaboration: between different teams, leading to higher productivity.

21

Development methodologies evolve from Agile to DevOps.

The evolution of development methodologies from Agile to DevOps is a natural result of

changing software industry requirements and challenges faced by development teams over

time. Initially, methodologies such as Waterfall were based on sequential and strictly

defined phases, where the transition from one stage to another could only be completed after

the previous stage had been fully completed. This system has been successful for certain

projects, but has failed to provide the necessary flexibility with the complexity of projects

and the increasing speed of technical changes and market demands. This is where the

methodology emerged. Agile as a response to this growing need for flexibility.

Agile was a radical shift from Waterfall, focusing on incremental and repetitive software

development, allowing teams to react to changes quickly and effectively. The idea of short

sprints and daily and frequent meetings was innovative and helped create a more interactive

development environment. Agile allowed development teams to deliver pieces of software

or functionality within short periods, giving users or customers the opportunity to provide

feedback frequently, thereby continuously improving the product.

However, Agile was unable to solve all the challenges, especially in terms of collaboration

between development and operations teams. There was a significant gap between

development and operations or deployments, which led to deployment delays or post-

deployment errors due to the difference between the development environment and the

production environment. DevOps comes in as an additional step, as it seeks to integrate

technical teams with operations teams to speed up the deployment process and improve

product quality.

DevOps is not only about agile development, it is also about creating an integrated

environment that enables the automation of processes and tests, reducing the likelihood of

errors and increasing the speed of delivery. The idea is that instead of development teams

and operations teams working separately, close collaboration is established between the two

parties, allowing for continuous integration and continuous distribution (CI/CD). This

22

continuous integration means that changes made to the code are automatically integrated and

tested on development environments similar to the production environment, enabling errors

to be detected early and addressed before they reach the end user.

Over time, DevOps has become a necessity in modern business environments. It is no longer

just an option but a necessity for development teams seeking to deliver solutions quickly and

efficiently, while maintaining high quality. DevOps isn't just about tools like Jenkins,

Docker, or Kubernetes, it's about changing the entire business culture. It calls on teams to

take shared responsibility for the entire product, from the first development phase to the

deployment phase and beyond.

Comparison between DevOps and traditional methodologies (Waterfall/Agile).

When we look at traditional software development methodologies such as Waterfall and

Agile and compare them with DevOps, we find that each methodology represents a different

approach to development and operation. Waterfall's methodology, which has long prevailed,

relies on a series of sequential and clear phases such as analysis, design, development,

testing, and deployment. This methodology requires the completion of each stage before

moving on to the next, making it suitable for projects whose requirements are clear and

consistent since The beginning. However, this approach can be rigid and inflexible in the

face of sudden changes or modifications that may occur during the development process,

which can lead to delays and increased costs if the team is forced to rework in earlier stages.

In contrast, Agile's methodology came in response to the growing need for flexibility and

adaptation to constant changes in market and technology demands. Agile relies on software

development in an iterative and increasingly repetitive manner, where the project is divided

into small units called "sprints" that can be accomplished in short periods of time. This

approach allows the team to continuously improve the product based on user feedback and

changes in the surrounding environment. Agile also encourageson continuous

communication and close collaboration between team members, which enhances the

effectiveness of work and reduces the chances of errors or gaps in understanding between

23

developers and stakeholders.

 DevOps is not just a development methodology but a holistic culture that aims to integrate

development and operations in an integrated manner. While Waterfall focuses on sequential

organization and Agile on iteration and adaptation, DevOps seeks to improve collaboration

between different teams by automating processes and providing a co-working environment

that facilitates continuous integration and continuous delivery (CI/CD). This approach helps

reduce the gap between development and operation, speeding up the deployment process,

reducing errors and increasing software quality.

One fundamental difference between DevOps and traditional methodologies is the focus on

automation and continuous integration. In the Waterfall methodology, processes are often

manual and require significant human intervention at every stage, which increases the

likelihood of errors and slows down the speed of development. In DevOps, tools like Jenkins

Docker and Kubernetes are used to automate build, test, and deploy processes, allowing the

team to focus on developing new features rather than handling routine processes. This

improves efficiency and reduces the time spent delivering software to end users.

On the other hand, Agile relies on continuous communication and collaboration between

team members and stakeholders, which enhances the team's ability to adapt to changes and

meet customer needs quickly. Despite these advantages, Agile may face challenges in

managing large and complex environments where coordination between multiple teams is

difficult. DevOps complements Agile by providing an integrated environment that ensures

better communication between teams and faster and more reliable delivery.

In addition, DevOps fosters a culture of continuous improvement and learning within the

team, where performance is analyzed, errors are detected periodically and immediate

solutions are provided to improve operations. This approach enhances software quality and

reduces the likelihood of major problems when deploying. In contrast, Waterfall and Agile

methodologies may focus on certain aspects of the development process without paying the

same attention to ongoing operation and maintenance, which can lead to a quality gap when

24

the final product is delivered.

In the end, DevOps is arguably a natural evolution of previous development methodologies

such as Waterfall and Agile, combining the best of each methodology to comprehensively

improve the software development process. By focusing on automation, continuous

integration, and collaboration between teams, DevOps provides a more efficient and

flexible environment that meets the modern-day needs of rapid development and high

software quality. This makes it the perfect choice for many organizations seeking to stay

competitive in a rapidly changing market and demanding Growing from users and

customers.

The role of collaboration between teams in accelerating deployment.

Collaboration between different teams has a pivotal role in accelerating the deployment

process in the world of software development. When the development team works in

isolation from the operations team or the testing team, significant challenges arise that may

lead to deployment delays, as problems related to coordination and communication between

teams are exacerbated. In traditional development models, there was a kind of disconnect

between those teams, where the development team accomplished a large part of the work

before handing it over to the operations or testing team, causing delays or the emergence of

Unexpected issues at first. These disconnections lead to long waiting times between each

stage, slowing down the software development lifecycle.

In a DevOps environment, different teams are encouraged to collaborate and work together

more seamlessly. Development teams, operations teams, and test teams meet at the

beginning of the project and continue to work together throughout the development period.

This type of collaboration reduces traditional wait times between different stages, as each

team is fully aware of what the other team is doing. When teams work in an integrated

manner, there is less chance of errors resulting from misunderstandings or mismatches

between The code developed and the environment in which it will run.

25

The collaboration here is not limited to the technical aspects, but extends to the cultural and

organizational aspects within the team. In DevOps environments, everyone shares

responsibility for the success of the project from start to finish, not just the team working on

the current stage. This sense of shared responsibility motivates teams to work more

effectively and innovate solutions to problems quickly.

In projects that rely on continuous integration (CI) and continuous delivery (CD),

collaboration between teams is even more important. When the development team

repeatedly pushes code updates, the testing team and operations teams are ready to test and

deploy those updates at the same time. Open and continuous communication plays a big role

in speeding up this process, as problems are detected and resolved in real time, rather than

waiting for a full stage to be completed before the problem is discovered.

Through this close collaboration between teams, transition times between development,

testing, and deployment are reduced. Instead of waiting days or weeks to move the project

from one team to another, it is worked on in parallel and synchronously, accelerating the

pace of deployment. For example, the test team can start testing updates immediately after

the development team has completed the code, reducing the delays that used to occur in

traditional models.

Another aspect of collaboration between teams is improving internal communication. When

communication between teams is limited, misunderstandings or failure to prioritize may

occur, leading to unnecessary delays. But when teams constantly communicate and share

information openly, decision-making is accelerated and course correction is corrected when

needed. Collaborative teams are able to deal with problems faster, as everyone is aware of

the current situation and immediate needs of the project.

Automation technology has played a big role in facilitating this collaboration and

accelerating deployment. With tools like Jenkins and GitLab CI, teams can automate many

routine processes such as testing and deployment, saving time and allowing teams to focus

on the most important tasks. With these tools, work between teams becomes smoother and

26

more efficient, as the operations team can monitor new updates as soon as they are pushed by

the development team, and the testing team can perform automated tests on the new code in

real time.

Collaboration between teams clearly enhances deployment speed because it removes

barriers that existed in traditional models. When there are no obstacles between teams and

there is no delay caused by waiting for other teams, deployments can be completed more

quickly and with higher quality.

The second topic: DevOps tools and software testing (DevOps Tools and

Software Testing)

Continuous integration (CI) tools such as Jenkins and GitLab CI.

Continuous integration (CI) tools such as Jenkins and GitLab CI have become essential in

modern software development environments, helping teams integrate and test code

automatically and continuously. The idea of continuous integration emerged as a reaction to

the challenges faced by traditional development teams, as manual integrations were time-

consuming and often led to unexpected errors that appear after merging code fragments from

different team members. Continuous integration solves this problem by automating the

integration and testing process Frequently and systematically.

 Jenkins is one of the most popular continuous integration tools, which is open source and

very flexible. It allows developers to create "pipelines" in which a set of operations are

performed sequentially or in parallel. Jenkins can be used to execute everything from

building and compiling code, to executing unit tests, to deploying the application to

production or test environments. With Jenkins, custom processes can be set up to meet the

27

needs of each individual project, making it suitable for development teams that need

flexibility in managing their different environments.

In Jenkins, a continuous integration environment is set up by "agents," which are the devices

or environments in which operations are performed. These subservers can be distributed

across different platforms, allowing the development team to test the code on multiple

operating systems or different configurations. The idea here is that Jenkins acts as a central

platform that manages all integrations, testing and deployments, providing a comprehensive

view of the health of the code at any given moment.

On the other hand, GitLab CI comes as part of GitLab's comprehensive code repository

management platform. GitLab CI offers capabilities similar to those offered by Jenkins, but

features deep integration with the Git copy control system. With GitLab CI, continuous

integrations run immediately after any update or modification to the code stored in the

repository. This means that once a team member pushes their changes to the repository, unit

tests, compatibility checks, and any other steps specified in the CI file are run.

GitLab CI builds code in isolated environments called "containers" using tools like Docker,

which means that the code is tested in a near-identical environment to the environment in

which it will be deployed. This significantly reduces the problems that may occur as a result

of environments differing between the development phase and the production phase.

Containers also allow for increased speed of testing and development processes, as

environments are dynamically built, tested and removed as needed.

Tools like Jenkins and GitLab CI support development teams in automating deployments

further. Instead of performing deployments manually, you can set up continuous deployment

pipelines (CDs) that automatically deploy changes after they pass certain stages of testing.

This significantly reduces deployment time and ensures higher software quality, as changes

that reach the production stage have gone through multiple stages of verification and testing.

Another advantage of using CI tools like Jenkins and GitLab CI is the ability to detect errors

28

early. In traditional development models, errors are often detected at later stages of the

project, making them more complex and expensive to fix. But with continuous integration,

code is repeatedly and continuously tested, allowing developers to detect errors almost as

they occur. This allows them to fix them in a timely manner and minimize the negative

impact on the rest of the team or the project as a whole.

In addition, both Jenkins and GitLab CI are scalable. Whether the development team is small

or made up of hundreds of developers, these two systems can be configured to suit the size

and requirements of the team. More resources can be easily added to support an increase in

the number of processes or environments being tested.

Tools such as Jenkins and GitLab CI have contributed significantly to improving software

quality and speed of development, as they reduce manual repetition of processes and allow

developers to focus on creative and development tasks rather than dealing with routine

technical problems. These tools have become an essential element in every modern

development environment, especially in companies that rely on the speed of software

delivery and stability.

Automated testing tools such as Selenium and JUnit.

Automated testing tools such as Selenium and JUnit play an important role in improving

software quality and speeding up the development process. Previously, the testing process

relied heavily on manual tests, which took a long time and were prone to human error. With

the increasing complexity of applications and the pressure to deliver them faster, there is a

need to automate tests to be more efficient and accurate. Selenium and JUnit are among the

tools that help achieve this goal.

Selenium is one of the most popular automation tools used to test web applications. The tool

allows developers to write scripts that simulate user interactions with the browser, such as

clicking buttons, entering data in fields, and even scrolling through pages. This allows the

application to be tested automatically, reducing the need for human intervention. Selenium

29

can be used with many programming languages such as Java, Python, and C#. Selenium is

not restricted to a specific operating system or browser, as it can be used to test web

applications across multiple browsers and operating systems. This makes it a very flexible

tool, especially in environments that require compatibility between different platforms.

One of the main advantages of using Selenium is the ability to perform parallel tests. This

means that multiple tests can be performed simultaneously across multiple browsers, which

greatly speeds up the testing process. Instead of running each test individually and waiting

for its results, they can all be executed simultaneously, saving significant time and effort. In

addition, Selenium can be integrated with other tools such as Jenkins or GitLab CI to

automate tests after each merge. (commit) or code update. In this way, the quality of the

application is checked continuously without the need for constant manual intervention.

On the other hand, JUnit is an automated testing tool used to test units in Java applications.

JUnit makes it easy to write small, specific tests for specific functions or modules in code.

The goal of these tests is to ensure that every piece of code works as expected. In modern

development environments, unit testing is an essential part of the software development

lifecycle, as errors detected early on are easier and less expensive to fix.

JUnit provides an easy and simple interface for writing and executing tests, and allows

developers to determine the results of expected tests. If the expected result differs from the

actual result, JUnit gives notification, making it easier to detect and correct errors. This tool

is very useful in Agile and DevOps environments, where the code is frequently updated and

needs to be constantly tested to ensure its stability.

Tools like Selenium and JUnit help reduce the development lifecycle significantly. Instead

of spending too much time on manual tests that may be inaccurate or lacking in

comprehensiveness, these tools provide a more effective and accurate solution. They can

perform tests repeatedly and at specific times, such as after each code update or before the

new version of the application is deployed. This helps teams quickly detect bugs before they

reach the production environment.

30

In addition to improving efficiency, tools like Selenium and JUnit provide a clearer view of

code quality. With test automation, detailed reports can be generated that show all errors and

problems detected during testing. These reports help teams focus on points that need to be

improved or corrected, improving the overall quality of the application.

Another challenge that automation tools solve is to reduce redundancy in tests. In manual

tests, the same test may need to be repeated several times at different stages of development.

But with tools like Selenium and JUnit, the test can only be written once, and then run

automatically whenever needed. This reduces the effort and ensures that all parts of the code

are tested equally and accurately.

Automate deployment and its impact on reducing errors.

Automation of deployment has become a fundamental feature in modern software

development, and it plays a crucial role in reducing errors and improving software quality.

When the deployment process is performed manually, many human errors often occur.

These errors can range from forgetting certain files, to entering the wrong settings or even

making unintentional changes in the production environment. The more complex the system

and the more teams involved, the more likely these errors are to occur. Here comes the

importance of deployment automation, as it can reduce These risks significantly.

Deployment automation relies on the use of certain tools and techniques that configure the

production environment and deploy code automatically. These tools take a large part of the

deployment process and do it uniformly and reliably. This helps reduce redundancy in the

procedures followed, thus reducing the chances of errors. In traditional deployment,

multiple actions can be required that may include file transfer, database setup, server

configuration, and others. But with automation, all these steps can be combined into one

organized process.

When automation is implemented correctly, all steps and settings are clearly recorded. This

31

means that everything that is implemented can be tracked, making the process transparent

and easy to understand. If a problem occurs after deployment, teams can easily return to logs

to determine the cause. This saves time and effort, as identifying the source of the error

becomes easier compared to manual deployment as it can be difficult to track exactly what

happened.

Automation also allows for the standardization of processes. This means that it doesn't

depend on specific individuals or methods of deployment, reducing reliance on individuals'

personal knowledge. Each team member can follow the same predetermined steps,

enhancing the quality of work. If there is a modification in the procedures, the processes can

be updated in one place and this will be applied to everyone.

In addition, deployment automation makes it easier to perform repeated deployment. In

modern development environments, frequent deployment and continuous updating are

preferred. Automation makes this process smoother, encouraging teams to push updates

faster and more securely. The more frequent deployment, the greater the chances of

detecting errors more quickly. Instead of waiting for major updates that may carry many

changes to be implemented, developers can detect bugs early and remediate them before the

production environment is affected. dramatically.

Also, with automation, teams can focus more on development and innovation rather than

worrying about the finer details of the deployment process. They can take advantage of the

time saved to work on new features or other improvements, enhancing the added value of the

final product.

Using automation tools like Jenkins and GitLab CI helps manage all aspects of the

deployment process in an integrated manner. These tools can interact with multiple

environments and coordinate deployments accurately, enhancing process efficiency. These

tools also offer features such as pre-release testing, where everything is verified before it is

pushed into production, increasing quality assurance.

32

Third Theme: Challenges in Implementing DevOps

 Integration between different tools.

Integration of different tools in a software development environment has become an integral

part of the modern development process, and this integration allows teams to run more

smoothly and effectively. Each tool is designed to meet specific needs, such as continuous

integration (CI) tools like Jenkins or GitLab CI, automated testing tools like Selenium and

JUnit, and code management tools like Git. When these tools work integratedly, teams can

comprehensively leverage the benefits of each tool, improving software quality and

reducing errors.

When tools like Jenkins are integrated with Git, the development process can start

automatically after each payment (commit). For example, once a developer pushes the code

to the Git repository, a notification is sent to Jenkins to start the continuous integration

process, pulling the code, then performing the necessary tests, and then building the

application if all tests are successful. This type of integration reduces the time it takes

developers to switch between different tools, as everything happens automatically and

without the need for human intervention.

Tools like Selenium can also be integrated with Jenkins, where automation tests can be set

up to be performed after each deployment or code update. When you set this up, teams have

assurance that every piece of application is repeatedly tested. If any test fails, developers can

be notified immediately, allowing them to fix issues before they reach the production

environment. This type of integration not only improves the quality of the final product, but

also saves a lot of time and effort Which could have been wasted looking for bugs after

posting.

One of the big benefits of integration between tools is the ability to reduce redundancy. In

traditional environments, teams had to manually repeat the same tasks each time an update

was deployed or changes were made. But with seamless integration between tools, the

scripts that take over these tasks can be written automatically. This means that human errors

33

caused by repetition can be reduced, as well as time spent on routine tasks.

Integration also facilitates the process of collaboration between different teams. In software

development teams, there may be developers, testers, and managers, and each team needs to

use different tools. When these tools work integrated, teams can communicate better and

share information easily. For example, testers can access test reports generated by Jenkins,

while developers can see and fix issues with previous tests. This type of integration-based

collaboration can contribute significantly in improving the final results.

The other thing is that project management tools, such as Jira, can also integrate with

development tools. Tasks in Jira can be linked to code pushes in Git or test results in Jenkins.

When these tools are integrated, all information related to development and projects can be

in one place, making it easier for teams to track progress and identify obstacles.

Besides, these integrations can provide comprehensive reporting and accurate data on the

development process. This data can be used to analyze performance and understand

weaknesses in operations. If there are recurring problems that arise at a certain stage of

development, the team can analyze the causes and address them radically.

Providing diverse tools capable of integrating with each other also enhances scalability. As

the team or project grows, new tools can be easily added to the existing process without the

need for a complete restructuring. This allows processes to be adapted to new business

requirements or changing priorities.

The need for qualified human resources.

The need for qualified human resources is vital to the successful application of DevOps

methodologies and their impact on software quality and acceleration of the development

lifecycle. When we talk about DevOps, we are referring to a software development

philosophy that combines development and operations in order to improve collaboration and

communication between different teams, thus achieving continuous delivery and improving

software quality.

34

However, the implementation of these methodologies requires human resources with diverse

skills and deep technical knowledge. In light of the increasing complexity of modern

applications, it becomes essential for teams to have members with experience in DevOps

tools such as Jenkins, Docker, Kubernetes, and others. These tools require good technical

knowledge and an understanding of how they integrate with testing and deployment

systems.

A lot of organizations have a hard time finding qualified professionals who possess the

necessary expertise in DevOps. People with these skills are often in high demand, creating

intense competition between companies to attract them. This challenge can lead to delays in

the implementation of DevOps projects or even their failure if there are not enough

qualified personnel.

Moreover, it is not enough for individuals to be just technical experts. These individuals also

need a good understanding of the software development process in general. They must have

the ability to work in a collaborative environment, as DevOps requires effective

communication between development and operations teams. Working in multidisciplinary

teams means that individuals must be able to share information and experiences effectively,

and this requires strong interpersonal skills.

Training and continuous development are integral to enhancing the skills of individuals in

DevOps environments. Technology is evolving rapidly, and anyone working in this field

should be aware of the latest trends and tools. Therefore, it is essential that companies invest

in training and development programs for their employees, whether through workshops,

educational courses, or even through e-learning platforms. These investments can contribute

to raising the level of skills and increasing employee loyalty to the company.

There is also a need to build a culture that fosters continuous learning and participation.

When individuals feel supported in their educational journey, they are more likely to apply

what they have learned in the work environment. This, in turn, can improve the performance

of teams and increase the quality of end products.

35

It is also important to consider the impact of the work environment on attracting qualified

human resources. Environments that encourage innovation and allow individuals to express

their opinions and participate in decision-making are more attractive to talent. Companies

that provide flexible work environments, support personal development, and offer

opportunities for promotion and career advancement are able to attract highly skilled

individuals.

Shifting to a DevOps culture requires a change in the way of thinking within the

organization. It requires individuals to be open to learning from mistakes, and to be willing

to adapt to constant changes. For this reason, developing leadership and management skills

in DevOps teams is crucial. Leaders who support their teams and encourage innovation and

continuous improvement can play a big role in the successful implementation of DevOps

methodologies.

Chapter Three: Methodology

The first topic: the work environment (Environment Setup)

Set up a CI/CD environment for the site.

In the beginning, we created a website for the experiment and my code is as follows:

GitHub Actions

1. Set Up GitLab CI/CD

To implement continuous integration and continuous deployment (CI/CD) for your

website, you can use GitLab CI/CD. The CI/CD process is defined using a .gitlab-ci.yml

file. Below are the steps involved:

 Step 1: Create the .gitlab-ci.yml file

o This file defines the stages (build, test, and deploy) for your pipeline.

o Example of a .gitlab-ci.yml

36

 Step 2: Push the .gitlab-ci.yml to your repository

o Once this file is created, push it to your GitLab repository. GitLab CI/CD will

automatically detect it and run the pipeline.

stages:
 - build
 - test
 - deploy

Build Stage
build:
 stage: build
 script:
 - echo "Building the website..."
 - docker build -t my-devops-website .

Test Stage
test:
 stage: test
 script:
 - echo "Running tests..."
 - docker run my-devops-website /bin/sh -c "npm
install && npm test"

Deploy Stage
deploy:
 stage: deploy
 script:
 - echo "Deploying the website..."
 - docker run -d -p 80:80 my-devops-website
 only:
 - master

37

2. Set Up Jenkins CI/CD

If you're using Jenkins for CI/CD, the following steps outline how to configure it:

 Step 1: Create a Jenkinsfile

o This file defines the pipeline stages in Jenkins (similar to GitLab).

 Step 2: Connect Jenkins to your Git repository

o Configure Jenkins to monitor changes to your Git repository, triggering the

pipeline whenever there’s a new commit.

pipeline {
agent any
stages {
stage('Build') {
steps {
echo 'Building the website...'
sh 'docker build -t my-devops-website .'
}
}
stage('Test') {
steps {
echo 'Running tests...'
sh 'docker run my-devops-website /bin/sh -c "npm
install && npm test"'
}
}
stage('Deploy') {
steps {
echo 'Deploying the website...'
sh 'docker run -d -p 80:80 my-devops-website'
}
}
}
}

38

3. Set Up Docker for CI/CD

Docker is used to containerize your application, making it easy to run in different

environments.

 Step 1: Create a Dockerfile

o This Dockerfile defines how to build the Docker image for your website.

o Example Dockerfile:

 Step 2: Build and Run the Docker Image

o The CI/CD pipeline uses this Dockerfile to build and run your website in a

Docker container.

4. Automated Testing

To ensure that your application works correctly after each change, you can automate the

testing process. The tests will run automatically during the "test" stage in both GitLab and

Jenkins pipelines.

FROM node:14

WORKDIR /app

COPY . .

RUN npm install

CMD ["npm", "start"]

EXPOSE 80

39

 Step 1: Write Automated Tests

o Create tests for your website (such as unit tests or integration tests).

o Include the commands to run these tests in the CI/CD pipeline.

 Step 2: Run Tests Automatically

o Tests are executed automatically whenever there’s a code push, ensuring that

the code is always in a deployable state.

5. Deploying the Website

The final stage of the CI/CD pipeline is deployment.

 Step 1: Deploy to Production

o In the "deploy" stage, the pipeline runs the Docker container for your website,

ensuring that it's live and accessible.

 Step 2: Monitor the Deployment

o Ensure that the deployed site is functioning correctly. In case of failures, the

CI/CD system can automatically roll back to a previous working version.

Tools used (Jenkins, GitLab, Docker).

Within the DevOps Testing Site site, tools such as Jenkins, GitLab, and Docker are essential

to setting up an effective CI/CD environment. These tools contribute to the improvement of

the site development process and make the deployment of updates easier and faster. Below is

40

a comprehensive explanation of how to use each of these tools to set up a CI/CD

environment for the site.

Jenkins on site

 Jenkins is used as an automation server to monitor the site's code repository. Jenkins allows

developers to build, edit, and publish updates automatically when any changes are pushed to

the repository.

How to set up Jenkins:

1. Jenkins installation: Jenkins is installed on a dedicated server, configured to

connect to the site's code repository.

2. Create a new project: A new Jenkins project has been created to track changes in

the site's Git repository.

3. Set up build tasks: Tasks required to build the project, such as running unit tests and

integration tests, are defined.

4. Notifications: Email notifications are set up to notify the team when tasks are

complete or when there are errors.

GitLab on site

 GitLab was used as the site's main code repository, making it easy to manage code and

review changes. GitLab provides an easy interface for reviewing code and managing

integration requests.

How to use GitLab:

1. Set up a GitLab repository: A new repository has been created in GitLab to store the

site's code.

2. .gitlab-ci.yml file: The .gitlab-ci.yml file is set up at the root of the repository. This

41

file contains instructions on how to build, test and deploy the site.

3. Request management: The team uses GitLab to conduct code reviews and manage
merge requests, facilitating collaboration between developers.

Docker on site

 Docker was used to create containers for the site, ensuring that the site works consistently
across all environments (development, testing, and production).

How to use Docker:

4. Create a Dockerfile: A Dockerfile is set up that defines how to build a Docker
image for the site. This includes installing the necessary credits and copying the site
files to the container.

Build the image: After setting up Dockerfile, the Docker image was built using the

command:

Container run: After building the image, containers can run on any environment using:

Configure an automated test of the site.

Configure automated testing for a site "DevOps Testing Site" is a comprehensive process

that aims to ensure the quality and performance of a site by automating a variety of tests. The

main goal of this process is to detect potential bugs or performance issues before they reach

the end user, which helps improve the user experience and reduce the time spent on

debugging.

Initially, the types of tests required are determined. Tests can be divided into several main

categories, including:

1. Unit Testing: Unit tests are one of the most important types of tests, as each piece of

code is tested independently. This is done using tools such as Jest or Mocha, as this

allows developers to write tests that cover individual functions. For example, if a

function processes user-input data, a test can be written to ensure that this function

42

works correctly under all possible conditions.

2. Integration Testing: After ensuring that all modules are running separately,

integration tests are performed to ensure that all parts work in harmony together.

Tools like Cypress are used to perform integration tests, where it is verified that

different modules, such as the user interface and backend processes, communicate

correctly.

3. UI Testing: UI tests are necessary to verify that users can interact with the site as

expected. Selenium, a powerful UI testing framework, can be used as it allows

developers to simulate user interaction with elements on the page, such as buttons and

fields. Scenarios are written to test each job individually, such as registering on the

site or submitting a contact form.

4. Performance Testing: Performance tests are performed to ensure that the site can

handle a large number of visitors without performance being affected. Tools such as

JMeter are used for this. How a site responds is tested under high pressure, such as a

large number of user requests at the same time.

5. Security testing: Security tests are a vital part of any web application. Tools such as

OWASP ZAP are used to detect potential vulnerabilities in the application. These

tests include checking data protection, and preventing attacks such as XSS and SQL

Injection.

Once you've identified test types, it's the testing environment configuration phase. Here, the

test tools are set up and configured to work with the site. Tests are written using appropriate

programming languages (such as JavaScript, if the site uses React or Node.js) and organized

into a file structure that is easy to understand and maintain.

Automate the testing process: Automation is an essential part of the automated testing

process. A CI/CD tool such as Jenkins or GitLab CI is configured to run these tests

automatically whenever new changes are pushed to the repository. The CI/CD tool is

43

configured to automate all tests, allowing the code to be checked periodically and

permanently.

Results report: After running tests, the results are collected and a detailed report is provided

to the developers. This report includes information about successful tests, tests that failed,

and any errors detected. Developers rely on this information to prioritize corrections, which

helps in continuously improving quality.

Feedback: An instant feedback system is an important part of the automated testing process.

Developers notify when an error or test failure occurs via push notifications, allowing them

to respond quickly to any issues.

Continuous improvement: Automated tests are a dynamic process. Tests should be

reviewed and updated regularly to ensure that all new features or modifications are covered

in the code. The team should be prepared to add new tests or modify existing tests as the

project progresses.

The second topic: DevOps Application (DevOps Implementation)

An explanation of the steps that were followed in implementing the CI/CD.

Implementing the CI/CD environment for the DevOps Testing Site requires a set of

specific steps to ensure smooth functioning and achieving desired goals. Here is the

explanation of the steps that were followed in implementing CI/CD:

1. Set up the code repository

Initially, a code repository was created on a platform like GitHub or GitLab. This allows

code management and follow-up changes effectively. The site code was uploaded to the

repository, making it available to the development team.

2. Configure the CI/CD tool

A CI/CD tool such as Jenkins or GitLab CI was chosen.This tool is set up to be linked to

44

the code repository. This is done by setting up a configuration file that defines how build,

test, and deployment operations are running.

3. Writing a construction script

 Build scripts have been created that specify the steps needed to build the project. This

includes installing the required packages, compiling files, and configuring the

environment. For example, a script can involve installing any necessary libraries or tools

using npm or yarn.

4. Test preparation

Automated tests are set up to ensure code quality. This includes writing unit tests,

integration tests, and UI tests. Appropriate tools such as JEST for generic tests and

Selenium for UI tests have been chosen.

5. Configure the test environment

It required setting up a standalone test environment to simulate the real conditions in

which the site would operate. Docker can be used to create containers that contain the

appropriate environment.

6. Set up deployment steps

The necessary steps to deploy the site have been determined after passing all tests. These

steps include building the final package and uploading it to the production server. This can

include copying files to a server via SSH or using services such as AWS or Heroku.

7. Add notes and alerts

The system is set up to send alerts to the team when errors occur in tests or when

construction processes are finished. These alerts can include emails or notifications on

social media platforms such as Slack.

45

8. CI/CD Series Implementation

After all the steps were prepared, the CI/CD series was executed.Whenever new changes

are pushed to the repository, the process starts automatically:

 Build: Jenkins or GitLab CI starts building the project using the specified script.

 Testing: All selected tests are run, with results reported.

 Publishing: If the code successfully passes all tests, the new version of the site is

published automatically.

9. Monitoring and evaluation

The process was monitored regularly to evaluate performance and detect any issues. Based

on test results and feedback from the team, improvements were made to processes and

tests.

10.Continuous improvement

The principle of continuous improvement has been adopted, with each step of the CI/CD

being reviewed regularly to ensure the effectiveness of operations. Tests and settings have

been updated whenever new features are added or code modified.

Chapter Four: End of research

Conclusion

The challenges encountered during this journey were met with effective solutions,

allowing the team to refine their practices continually. Ultimately, the transition to a

CI/CD framework has not only improved the team's workflow but has also contributed to a

more robust and scalable application.

Results

 Improved deployment frequency

46

 Enhanced code quality and reliability

 Increased collaboration among team members

Recommendations

 Regularly update testing frameworks and tools

 Invest in continuous training for team members

 Implement a robust monitoring system for production environments

 Establish clear documentation practices

references

1. Beal, V. (2020). DevOps: A software development and IT operations approach.

TechTarget.

2. Kim, G., Debois, P., & Willis, J. (2016). The DevOps Handbook: How to create world-

class agility, reliability, & security in technology organizations. IT Revolution Press.

3. Duffy, G. (2019). Continuous integration and continuous delivery: A comprehensive

guide. Software Development Times.

4. Lwakatare, L. E., Karhu, K., & Paasivaara, M. (2019). Exploring the challenges of

DevOps adoption. Journal of Systems and Software, 149, 31-47.

5. Fowler, M. (2006). Continuous integration. Martin Fowler’s Blog.

6. Jez, H., & Kim, G. (2016). The DevOps Handbook: How to create world-class agility,

reliability, & security in technology organizations. IT Revolution Press.

7. Pahl, C., & Lee, B. (2017). Containerization and the evolution of DevOps: A

systematic literature review. Journal of Software: Evolution and Process, 29(6).

8. Menzies, T., & Parnas, D. L. (2017). Software Engineering: A Practitioner’s

47

Approach. McGraw-Hill.

9. Ashkenas, J. (2017). The importance of DevOps in the modern enterprise. Harvard

Business Review.

10.Dingsøyr, T., & Moe, N. B. (2014). Agile software development: Current research and

future directions. Journal of Systems and Software, 92, 1-6.

11.Soni, P., & Bhatia, S. (2019). A study on DevOps and its role in software development.

International Journal of Computer Applications, 182(8), 19-23.

	Chapter One: Introduction
	Introduction
	The first topic: the background of the research (Background)
	The second topic: the research problem (Research Problem)
	Third Theme: Research Objectives

	Chapter Two: Literature Review
	The first topic: DevOps and Development Methodologies
	The second topic: DevOps tools and software testing (DevOps Tools and Software Testing)
	Third Theme: Challenges in Implementing DevOps

	Chapter Three: Methodology
	The first topic: the work environment (Environment Setup)
	The second topic: DevOps Application (DevOps Implementation)
	Chapter Four: End of research
	Conclusion
	Results
	Recommendations
	references

